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1. INTRODUCTION

We consider the following questions:

(A) How many different sizes of cycles does a permutation of n letters
have (on the average, when # is large)?

(B) How many different sizes of parts does a partition of the integer n
have (on the average, when n is large)?

(C) How many subspaces does an n-dimensional vector space over a
finite field have, when n is large?

The answers are given, respectively, by

THEOREM A. The average number of cycles exceeds the average number
of distinct cycle lengths of an n-pefmutation by an amount that approaches
the constant

A= i gj%:C(m)=6598155... ()
m=2 *

as n approaches infinity ({ is the Riemann zeta function).

It is well known that the average number of cycles is log n 4+ y + o(1).
THEOREM B. The average number of different sizes of parts that a
partition of the integer n has is

J'\’\/g 1/2
(4

! R (1o ).
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In fact, almost all partitions have

Ve

nl/Z +w(n)nl/4

different sizes of parts, where w(n) is any function that tends to infinity
with n.

THEOREM C. Let q be a fixed prime power, and let G, be the number of
vector subspaces of n-space over GF(q). Then

G,~Co(@) g™  (n— oo, neven), 3
~Cig@) g™  (n- oo, nodd), (
in which the constants are given by
& 2
C@) =3 q-'/n (g,
-0 i»l1
“)
Cig)= Z q " "2”/]—[ (-
i>1

2. PERMUTATIONS

We first consider the permutations of n letters. It is well known, from
Riddell’s formula or otherwise, that if ¢,(S) is the number of these whose
cycle lengths all lie in the set S of positive integers, then

) ———“";1(;9 ) xn = [T e (5)

ny0 * SES

Let T be a fixed set of positive integers. If we multiply both sides of (5) by
(=1)'"=151 and sum over all subsets S < T, we obtain

_4 Wn(T) 1"[ (exl/t (6)

n>0 ‘ ter

where now y,(T) is the number of n-permutations whose set of cycle lengths
is exactly T.
Next sum (6) over all sets T such that |T]| =k, to get

> p‘(n k)x = coeff,, { ] (1 +y(e" — 1))}.

n30 ' t>1
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Finally,

2 ”——‘(Z; S eryk = [T 145"~ 1) )
k>0 : t>1
is the generating function for p,(n, k), the number of n-permutations that
have exactly k different cycle lengths.

Next, let ¢, denote the average number of different cycle lengths of an n-
permutation. If we apply 8/dy log to (7) and set y = 1 we get

1
N e xt=——r N (1 e ®)
50 (1-x) 5

and after matching coefficients we find

I O ) A
Cp= Z T S_‘ =" (9)
m=1 : r<tgn/m

The term m = 1 contributes log n + y + o(1) (in fact, that one term is exactly
the average number of cycles), while the other terms give

)m+l

o EDT

v m {o(: (_1)m+l l
ws2  m! 1<i<n/m e moy  om! tm) + o1).

The above interchange of limiting processes is justified by the absolute
convergence of the double series. Hence the average number of distinct cycle
lengths of an n-permutation is N

c,=logn+y—Q+o(l),

where Q is given by (1), completing the proof of Theorem A. Table I is a
table of the p,(n, k).

TABLE |

The Number of n-Permutations with k Cycle-Lengths

1 23 4 5 6 7 8 9 10
k
1 1 23 10 25 176 721 6406 42,561 436,402
2 3 14 95 424 3269 21,202 178,443 1,622,798
3 120 1050 12,712 141,876 1,418,400
4 151,200
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3. GENERALIZATIONS

The success of the method is traceable to the multiplicativity of the
generating function on the right side of (5). Such g.f.’s, however, are very
common. Suppose, in general, that ¢,(S) is the number of combinatorial
objects of “size” n whose “parts” all have sizes that lie in a certain set S.
Suppose further that

Y 2,08 x" =[x (10)

np»0 SES

where {a,} is a sequence of universal (=independent of §) constants. Then,
as in (6),

N oauDx" =[] (fx) =1 (11)
n30 teT
and (7) becomes
S aup(n k) x"y* =TT (1 +y(filx) = D). (12)
k>0 t>1

This is the generating function for the number p(n, k) of objects of size n
whose parts have exactly & different sizes.

For another example, let p,(n, k) be the number of partitions of the integer
n into not necessarily distinct parts of exactly k different sizes. Then (10)
holds with a,=1 and f;(u) = (I —u)~°, and so from (12) we get

t
yx
1+ ———.
+l—x'

A ACNOEL L | (13)

n,k>0 t>1

For a final example, let p,(n, k) be the number of partitions of the set {n]
that have exactly k different sizes of blocks. Then again (10) holds, this time
with f,(u) = **' and a,= 1/n!, and we find

n,k n Xt
S 2R ok T (1 e — 1), (14)
nkso 1 1>1

Other examples might include labeled graphs and the distinct sizes of their
connected components, rooted forests and the distinct sizes of their trees, etc.
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4. THE AVERAGE NUMBER OF DISTINCT PARTS OF A PARTITION OF n

If we apply &/dy log to (13), let y = 1, and match coefficients of powers of
x, we find easily that the average number of different sizes of parts that
occur in a partition of n is exactly

d, = (p(0) + p(1) + --- + p(n — 1))/p(n), (15)

where p is the partition function.

Now such a simple formula deserves a simple combinatorial proof, and
here is one. For a partition 7 and an integer r, let d(n) be the number of
distinct parts of = and let y(r,n) be 1 if r is a part of 7, and O otherwise.
Then

p(nyd, = Véw)—\ S x(hm
n l)l

N m)

n

N\
>

Il

N p(n=1)
Y

as required.
From the Hardy—Ramanujan estimate

(n) ! ex \/z
P~ 3n &P "N 3

Theorem B follows easily from (15) by summation (see [3], p. 341). The
remark about “almost all” partitions in Theorem B follows from similar
estimations applied to the generating function for the second moment.

As a subject for future research we originally suggested the study of the
asymptotics of the excess of the average number of blocks over the average
number of different block sizes of a partition of [#]. Andrew Odlyzko and
Bruce Richmond solved that problem, and showed that the average number
of different block sizes in a partltlon of {n] is ~elog n. Their results will
appear in [2].

5. THE NUMBER OF VECTOR SUBSPACES

Here we investigate the sizes of the Gaussian coefficients

1] - @' =1
ki, (@ —1g“ ' -1 (g-1)

(16)
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and tumbers G, =3, [{],- If g is a prime power, then (16)
coungnsional subspaces of n-space over GF(g), and G, is the
total subspaces, regardless of dimension. If g is not a prime
powe still counts k& X n matrices in reduced row echelon form
over (ters [1]

Ncom (16) we have

[ fila-a)[ 11 a-a][ [T a=a] an
and ¢ once the upper estimate

i1

[Z ]ngk(n—k)/n (a—q). (18)

Fstimate, we use the fact that

[TO=-x)>1-Yx 0<x;<1)

and
n oo
[ A—¢H21- ¥ g7>1- Y g7
+1 n—k+1 n—k+1
—(n—k)
_1_4
(@—-1)
and
[} —k
_ q
l—q 21— .
!1:[1( g g—1

Fin: the lower bound

1] el

—k —(n—k) —n
q q q
1- - 19
T
forn coefficient.
ly the size of G, define the sum
S(n)= 2 ghkin=h, 20)

k=0
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To estimate S(n), we have

n
S(n):_qnl/d 2 q~(k—-n/2)1 (21)
k=0
and if n is even,
n Z 2 it 2
S q—(k—m)1=1+22q—r N 2 q—r (n—»oo)
k=0 r=1 — 0
whence
2 i 2
S(n)~q " (S q ' ) (n— oo, n even). (22)
-

Similarly we find that
oo
S@~g (S g7 )  oonoddy  (3)

Now we want to sum (19) to estimate G, from below. We will encounter
three sums that need estimating. First we will meet

n
Sz(n) — S qk(n—k)—k
k=0

n
_ L n=1/2)2 X —k—(n—1)/22
=q - 9

k=0

=0(g™""*S(n))

and similarly we will find

Sin)= X g4 h=eH = 0(g =S (),
k=0

Sdm= Y. 97" = 0" S(n).
k=0

Hence it follows that

6= % [ 1] > (sfTa=a) n+oay

k=0

and

G, < S(n) /ﬁ (1 —g7),



206 HERBERT S. WILF

TABLE II
q Clq) Clg)
2 7.36477 7.36475
3 3.01976 3.01824
4 2.18989 2.18281
5 1.84551 1.82955
7 1.53747 1.49939
8 1.45506 1.40538
and therefore
= —qgH 24
Jlim S(n ;U.( q7)" (24)

If we combine this fact with estimates (22), (23) we find that Theorem C is
proved. '

The values of the constants Cy(g), C,(¢) in Eq. (4) appear in Table II.

An interesting feature of the asymptotics is the size of the central
Gaussian coefficient. Recall that the middle binomial coefficient alone
contributes K/y/n of the sum of all binomial coefficients of the same order.
In the case of the Gaussian coefficients, the distribution is even more peaked.
In fact, the central coefficient contributes a fixed positive fraction of the
total. Precisely, our estimates above show that

n it 2]
li =N g
AT M

neven

" [(n—l)/z]/c qlgi"f

For example, it is true that “about 47% of all vector subspaces of n-space
over GF(2) have the middle dimension n/2, if n is even.”

Finally, estimates (18), (19) show that if k=n/2+x, then for the
Gaussian coefficients we have the estimate

n /4 —x? i .
[(n/2)+x],,~q’q /I;Il(l—q) (- ).

J

In other words, the distribution of the Gaussian coefficients is asymptotically
normal with bounded variance.
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